05 February 2010

I, Virus...

Most of us take being human for granted. We just assume we are. But are we really 100% human according to our genetic structure? I always wondered about the incorporation of viral genetic material from vaccines and that is one of the reasons I am opposed to the widespread use of vaccines. I wonder if we might be producing 'hybrid humans'. The following article goes even further and asserts that 50% of our genetic material is not human, but viral, hence the title: I, Virus...
Enjoy. Learn. Think. Share.

I, Virus: Why You are Only Half Human
Frank Ryan
Continue reading page
1 2 3
In 1950, rabbits infected with myxoma virus were released into the wild. Within three months 99.8 per cent of rabbits in south-east Australia were dead
Although the myxomatosis epidemic was not planned as an evolutionary experiment, it had evolutionary consequences. The myxoma virus's natural host is the Brazilian rabbit, in which it is a persistant partner causing no more than minor skin blemishes. The same is now true of rabbits in Australia. Over the course of the epidemic the virus selected for rabbits with a minority genetic variant capable of surviving infection. Plague culling was followed by co-evolution, and today rabbit and virus coexist in a largely non-pathogenic mutualism.
Now imagine a plague virus attacking an early human population in Africa. The epidemic would have followed a similar trajectory, with plague culling followed by a period in which survivors and virus co-evolved. There is evidence that this happened repeatedly during our evolution, though when, and through what infectious agents, is unknown (
Proceedings of the National Academy of Sciences, vol 99, p 11748).
Even today viral diseases are changing the course of human evolution. Although the plague culling effect is mitigated by medical intervention in the AIDS pandemic, we nevertheless observe selection pressure on humans and virus alike. For example, the human gene HLA-B plays an important role in the response to HIV-1 infection, and different variants are strongly associated with the rate of AIDS progression. It is therefore likely that different HLA-B alleles impose selection pressure on HIV-1, while HLA-B gene frequencies in the population are likely to be influenced by HIV (
Nature, vol 432, p 769). This is symbiogenesis in action.
How does that move us closer to understanding the composition of the human genome? HIV-1 is a retrovirus, a class of RNA virus that converts its RNA genome into DNA before implanting it into host chromosomes. This process, known as endogenisation, converts an infectious virus into a non-infectious endogenous retrovirus (ERV). In humans, ERVs are called HERVs.
Germline invaders
Endogenisation allows retroviruses to take genetic symbiosis to a new level. Usually it is an extension of the normal infectious process, when a retrovirus infects a blood cell, such as a lymphocyte. But if the virus happens to get incorporated in a chromosome in the host's germ line (sperm or egg), it can become part of the genome of future generations.
Such germ-line endogenisation has happened repeatedly in our own lineage - it is the source of all that viral DNA in our genome. The human genome contains thousands of HERVs from between 30 and 50 different families, believed to be the legacy of epidemics throughout our evolutionary history. We might pause to consider that we are the descendents of the survivors of a harrowing, if brutally creative, series of viral epidemics.
Endogenisation is happening right now in a retroviral epidemic that is spreading among koalas in Australia. The retrovirus, KoRv, appeared about 100 years ago and has already spread through 75 per cent of the koala's range, culling animals on a large scale and simultaneously invading the germ line of the survivors.
Retroviruses don't have a monopoly on endogenisation. Earlier this month researchers reported finding genes from a bornavirus in the genomes of several mammals, including humans, the first time a virus not in the retrovirus class has been identified in an animal genome. The virus appears to have entered the germ line of a mammalian ancestor around 40 million years ago (
Nature, vol 463, p 84). Many more such discoveries are anticipated, perhaps explaining the origin of some of that mysterious half of the genome.
The ability of viruses to unite, genome-to-genome, with their hosts has clear evolutionary significance. For the host, it means new material for evolution. If a virus happens to introduce a useful gene, natural selection will act on it and, like a beneficial new mutation, it may spread through the population.
Could a viral gene really be useful to a mammal? Don't bet against it. Retroviruses have undergone a long co-evolutionary relationship with their hosts, during which they have evolved the ability to manipulate host defences for their own ends. So we might expect the genes of viruses infecting humans to be compatible with human biology.
This is also true of their regulatory DNA. A virus integrating itself into the germ line brings not just its own genes, but also regulatory regions that control those genes. Viral genomes are bookended by regions known as long terminal repeats (LTRs), which contain an array of sequences capable of controlling not just viral genes but host ones as well. Many LTRs contain attachment sites for host hormones, for example, which probably evolved to allow the virus to manipulate host defences.
Retroviruses will often endogenise repeatedly throughout the host genome, leading to a gradual accumulation of anything up to 1000 ERVs. Each integration offers the potential of symbiogenetic evolution.
Once an ERV is established in the genome, natural selection will act on it, weeding out viral genes or regulatory sequences that impair survival of the host, ignoring those that have no effect, and positively selecting the rare ones that enhance survival.
Read full article
Continue reading page 1 2 3

No comments: